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A Entropy and the Kullback-Leibler information criterion

A.1 General Remarks

The Kullback-Leibler information criterion, or directed Kullback-Leibler divergence, has been

widely used as a measure of dissimilarity between two probability distributions F and G with

densities or probability mass functions f (x) and g(x). It is introduced by Kullback and Leibler

(1951) and further developed in Kullback (1959). In case of continuous distributions, where f (x)

and g(x) are densities, it is defined as

K[F : G] =
∫
X

f (x) log
f (x)
g(x)

d x (1)

where X is the set of all x for which f (x) > 0 and g(x) > 0.

In case of discrete distributions, where f (x) and g(x) are probability mass functions, f (x) =

PrF(X = x) and g(x) = PrG(X = x), it is defined as

K[F : G] = ∑
x∈X

f (x) log
f (x)
g(x)

(2)

If there exists a uniform density U defined on X , for example, if X has only a finite number

of elements or if X is an interval of real numbers, then the Shannon entropy of a distribution F,

which is defined as

H[F] = −EF(log f (x)) = −
∫
X

f (x) log f (x) d x, (3)

for the continuous case, or

H[F] = −EF(log f (x)) = −∑
x∈X

f (x) log f (x), (4)

for the discrete case, is, up to a constant, equal to the negative of the directed Kullback-Leibler

divergence of F relative to this uniform distribution. Since the density of a Uniform distribution
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is constant, say, allways equal to c if x is in X , then the directed Kullback-Leibler divergence of F

relative to U is, in the continuous case,

K[F : U] =
∫
X

f (x) log
f (x)

c
d x =

∫
X

f (x) log f (x) d x + log c
∫
X

f (x) d x

= −H[F] + log c

(5)

and in the discrete case

K[F : U] = ∑
x∈X

f (x) log
f (x)

c
= ∑

x∈X
f (x) log f (x) + log c ∑

x∈X
f (x)

= −H[F] + log c

(6)

Now if there are two distributions F(θ1) and F(θ2) which are members of a parametric family

F of distributions and which are indexed by the parameter values θ1 and θ2 and if all members

of the family have the same support X and a uniform distribution U on X exists, then, trivially,

H[F(θ1)] > H[F(θ2)] implies K[F(θ1) : U] < K[F(θ2) : U], that is, the higher the entropy of a

member F(θ) of F the more similar it is to the uniform distribution U.

The choice of the logarithm in this definition is immaterial. In statistics it is common to use the

natural logarithm for convenience.

A.2 The Entropy of Multinomial Distributions

The probability mass function of a multinomial distribution M(p1, . . . , pI ; n) with cell probabilities

p1, . . . , pI and index n is

f (x1, . . . , xI) =
n

x1! · · · xI !
px1

1 · · · pxI
I (7)
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where (x1, . . . , xI) is any I-tuple of positive integer numbers that sum to ∑i xi = n. Consequently,

the entropy of this distribution is

H[M(p1, . . . , pI ; n)] = − ∑
x1,...,xI
∑i xi=n

f (x1, . . . , xI) ln f (x1, . . . , xI)

= − ∑
x1,...,xI
∑i xi=n

n
x1! · · · xI !

px1
1 · · · pxI

I ln
(

n
x1! · · · xI !

px1
1 · · · pxI

I

)
,

(8)

where the number of summands is (n+k−1
k−1 ).

There is no neat way to simplify this expression, except for the case n = 1, in which all xi are

either zero or one and the number of summands is I, thus

H[M(p1, . . . , pI ; 1)] = −
I

∑
i=1

pi ln pi. (9)

A.3 Maximum Entropy Multinomial Models

In the following we show that the Johnston-Pattie model Johnston and Pattie (2000) identifies the

distribution of maximum entropy subject to the constraint that the expectations of the counts are

equal to given (observed) marginal tables n1 = (n.jk), n2 = (ni.k), and n3 = (nij.). We show

that this is a special case of a distribution that minimizes the (directed) Kullback-Leibler informa-

tion divergence relative to a given reference distribution in order to show how the Johnston-Pattie

model can be generalized. We further show how the information criterion and maximum likeli-

hood estimation are related (the ‘template’ for such derivations is given in Good 1963).

Lemma 1 Let M(p∗; n) be a given multinomial distribution with cell probabilities p∗ = (p∗ijk) and size

index n. If p = (pijk) are the cell probabilities of a multinomial distribution M(p; n) that minimizes the

Kullback-Leibler information divergence

K [M(p; n) : M(p∗; n)] = ∑
i,j,k

pijk ln
pijk

p∗ijk
(10)
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subject to ∑k pijk = nij./n, ∑j pijk = ni.k/n, and ∑i pijk = n.jk/n then they can be expressed as

pijk =
p∗ijk exp(αij + βik + γjk)

∑r,s,t p∗rst exp(αrs + βrt + γst)
(11)

and be found by maximizing the likelihood function

∑
i,j,k

xijk ln pijk = ∑
i,j

nijαij + ∑
i,k

nikβik + ∑
j,k

njkγjk + ∑
i,j,k

xijk ln p∗ijk

−n ln(∑
i,j,k

p∗ijk exp(αij + βik + γjk))

(12)

for αij, βik, and γjk.

Proof: In order to prove the proposition we start with the method of Lagrange multipliers. Min-

imizing the Kullback-Leibler information divergence subject to the constraints specified in the

proposition is equivalent to minimizing the following function containing Lagange multipliers:

L = ∑
i,j,k

pijk ln pijk − ∑
i,j,k

pijk ln p∗ijk

+ ∑
i,j

αij

(
nij.

n
−∑

k
pijk

)
+ ∑

i,k
βik

(
ni.k
n

−∑
j

pijk

)
+ ∑

j,k
γjk

(
n.jk

n
−∑

i
pijk

)
+ τ

(
1− ∑

i,j,k
pijk

)
.

(13)

The first three sets of Lagrange multipliers assure that the given constraints are met, while the last

Lagrange multiplier assures that the cell probabilities sum to one.

A necessary condition for L to be at maximum is

0 =
∂L

∂pijk
= ln pijk + 1− ln p∗ijk − αij − βik − γjk − τ (14)

from which follows

ln pijk = ln p∗ijk − 1 + αij + βik + γjk + τ (15)

Since pijk are probabilities summing to one we my write

pijk =
pijk

∑r,s,t prst
=

exp(ln p∗ijk − 1 + αij + βik + γjk + τ)

∑r,s,t exp(ln p∗rst − 1 + αrs + βrt + γst + τ)
. (16)
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Because exp(τ − 1) drops out of nominator and denominator, this directly leads to equation (11)

so that the first part of the proof is complete.

For proving the second claim in the proposition we substitute the left hand side of equation

(15) into equation (13). We then obtain

L = ∑
i,j,k

pijk

(
ln p∗ijk − 1 + αij + βik + γjk + τ

)
− ∑

i,j,k
pijk ln p∗ijk

+ ∑
i,j

αij

(
nij.

n
−∑

k
pijk

)
+ ∑

i,k
βik

(
ni.k
n

−∑
j

pijk

)
+ ∑

j,k
γjk

(
n.jk

n
−∑

i
pijk

)
+ τ

(
1− ∑

i,j,k
pijk

)

= ∑
i,j

αij
nij.

n
+ ∑

i,k
βik

ni.k
n

+ ∑
j,k

γjk
n.jk

n
+ τ − 1

(17)

Because of

1 = ∑
i,j,k

pijk = exp(τ − 1) ∑
i,j,k

exp
(

ln p∗ijk + αij + βik + γjk

)
, (18)

from which follows

τ − 1 = − ln

(
∑
i,j,k

exp
(

ln p∗ijk + αij + βik + γjk

))
, (19)

we obtain

L = ∑
i,j

αij
nij.

n
+ ∑

i,k
βik

ni.k
n

+ ∑
j,k

γjk
n.jk

n
− ln

(
∑
i,j,k

p∗ijk exp(αij + βik + γjk)

)

= n−1

(
∑
i,j

nijαij + ∑
i,k

nikβik + ∑
j,k

njkγjk − n ln

(
∑
i,j,k

exp(ln p∗ijk + αij + βik + γjk)

))
.

(20)

Now consider an array (xijk) of counts with ∑k xijk = nij., ∑j xijk = ni.k, ∑i xijk = n.jk. The

log-likelihood of xijk under model (11) then is

` = ∑
i,j,k

xijk ln pijk = ∑
i,j,k

xijk ln
p∗ijk exp(αij + βik + γjk)

∑r,s,t p∗rst exp(αrs + βrt + γst)

= ∑
i,j,k

xijk ln p∗ijk + ∑
i,j

nijαij + ∑
i,k

nikβik + ∑
j,k

njkγjk − n ln

(
∑
i,j,k

exp(ln p∗ijk + αij + βik + γjk)

)
(21)
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Since p∗ijk is given, ∑i,j,k xijk ln p∗ijk does not depend on the α-, β- and γ-parameters. Now the

derivatives of both ` and L are ∂`
∂αij

= n ∂L
∂αij

= n ∑k pijk − nij., ∂`
∂βik

= n ∂L
∂βij

= n ∑j pijk − ni.k,

and ∂`
∂γjk

= n ∂L
∂γjk

= n ∑i pijk − n.jk, that is, both ` and L are at maximum if the constraints specified

in the proposition are satisfied. This concludes the proof. Some trivial simplifications lead the

following corollary:

Corollary 1 If a multinomial distribution M(p; n) with probability parameters p = (pijk) has maximum

entropy subject to the constraints ∑k pijk = nij./n, ∑j pijk = ni.k/n, and ∑i pijk = n.jk/n, then the

probability parameters have the form

pijk =
exp(αij + βik + γjk)

∑r,s,t exp(αrs + βrt + γst)
(22)

and can identified by maximizing

` = ∑
i,j

nijαij + ∑
i,k

nikβik + ∑
j,k

njkγjk − n ln(∑
r,s,t

exp(αrs + βrt + γst)). (23)

for αij, βik, and γjk.

The proof of the following lemma is omitted, because it is completely analogous to the one

given above:

Lemma 2 Let M(p∗; n) be a given multinomial distribution with cell probabilities p∗ = (p∗ijk) and size

index n. If p = (pijk) are the cell probabilities of a multinomial distribution M(p; n) that minimizes the

directed Kullback-Leibler information divergence

K [M(p; n) : M(p∗; n)] = ∑
i,j,k

pijk ln
pijk

p∗ijk
(24)

subject to ∑j pijk = ni.k/n and ∑i pijk = n.jk/n then they can be expressed as

pijk =
p∗ijk exp(βik + γjk)

∑r,s,t p∗rst exp(βrt + γst)
(25)
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and be found by maximizing the likelihood function

∑
i,j,k

xijk ln pijk + ∑
i,k

nikβik + ∑
j,k

njkγjk + ∑
i,j,k

xijk ln p∗ijk

−n ln(∑
i,j,k

p∗ijk exp(βik + γjk))

(26)

for βik, and γjk.

Corollary 2 If a multinomial distribution M(p; n) with probability parameters p = (pijk) has maximum

entropy subject to the constraints ∑j pijk = ni.k/n and ∑i pijk = n.jk/n, then the probability parameters

have the form

pijk =
exp(βik + γjk)

∑r,s,t exp(βrt + γst)
(27)

and can identified by maximizing

` = ∑
i,k

nikβik + ∑
j,k

njkγjk − n ln(∑
r,s,t

exp(βrt + γst)). (28)

for βik, and γjk.

Based on this model, for probability of falling in cell (i, j, k) conditional on falling in unit or

slice k of the array we find:

pij|k =
pijk

∑r,s prsk
=

exp(βik + γjk)
∑r,s exp(βrk + γsk)

=
exp(βik) exp(γjk)

∑r ∑s exp(βrk) exp(γsk)
=

exp(βik)
∑r exp(βrk)

exp(γjk)
∑s exp(γsk)

= pi.|k p.j|k.

(29)

That is, conditional on having the property indicated by k — for example, on being in voting

district k — the probability of having property j — for example to turn out or not to turn out to

vote — is independent from property i — for example, to belong to ethnic group i. Substantially,

this means that if only two marginal tables of aggregates about e.g. spatial units are observed, the

maximum entropy principle leads to a model that does not imply any statistical relation between

the properties the aggregates of which are observed.
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All these models have in common that they take as point of departure the entropy of a multino-

mial distribution for which the index is n = 1 or the directed Kullback-Leibler divergence between

two multinomial distributions with index n = 1. Of course, the ecological inference procedures

so far discussed deal with count data, so that n is usually much larger than one. But the deriva-

tions of maximum entropy multinomial distributions discussed above can be justified by the fact

that if counts (xijk) are generated by a multinomial distribution M(p; n), then they are the sum

of n identically independent distributed random variables with multinomial distribution M(p; 1)

(see also Vasicek 1980). But this consideration makes one thing clear: These maximum entropy

models rely on the assumption that for all n individuals the cell probabilities (pijk) that describe

their behavior are the same. This (implicit) assumption is lifted either by assuming that these cell

probabilities are random themselves, as by the method proposed in our paper, or by moving from

a (parametric) multinomial distribution to a general distribution of the cell counts (xijk) without a

parametric specification, as done in the next section of this appendix.

A.4 A Non-parametric Maximum Entropy Approach

In the following we construct a single-step maximum entropy model of the unknown counts x =

(xijk) in an (I × J × K)-array of which the marginal tables n1 = (n.jk), n2 = (ni.k), and n3 =

(nij.) are observed. We start with considering the (I × J × K)-dimensional random variable X =

(Xijk) of counts that satisfy 0 ≤ Xijk ≤ n and ∑i,j,k Xijk = n. Such a random variable may take

S := (n+I JK−1
I JK−1 ) different values. Any probability measure on this random variable may thus be

uniquely described by an S-dimensional vector (p1, . . . , pS), where each element is defined by

ps = Pr(X = x(s)) where ∑S
s=1 ps = 1. (For the sake of the argument we presuppose that an

ordering of the S = (n+I JK−1
I JK−1 ) feasible values of X has already been established.) Of course, in
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the absence of a parametric specification of the distribution of the counts, there is no other way of

describing such a distribution other than by this S-dimensional vector. As stated in the paper, if

I = 3, J = 2, K = 100 and n equal to one million, the number S = (n+I JK−1
I JK−1 ) of different values of

the (I × J × K)-dimensional random variable is no less than approximately 102189.

Now consider the random variables that describe possible marginal tables: N1 = (N.jk) =

(∑i Xijk), N2 = (Ni.k) := (∑j Xijk), N3 = (Nij.) := (∑k Xijk). For an arbitrary probability distribu-

tion of (Xijk) these random variables have expectations

E(N1) =
S

∑
s=1

psn
(s)
1 , E(N2) =

S

∑
s=1

psn
(s)
2 , and, E(N3) =

S

∑
s=1

psn
(s)
3 , (30)

where n
(s)
1 = (n(s)

.ik ) = (∑i x(s)
ijk ), n

(s)
2 = (n(s)

i.k ) = (∑j x(s)
ijk ), n

(s)
3 = (n(s)

ij. ) = (∑k x(s)
ijk ). Note that s is

the “running number” of one of the (n+I JK−1
I JK−1 ) possible cell configurations that satisfy x(s)

ijk = n.

A distribution of X that maximizes the entropy H(p1, . . . , pS) = −∑s ps log ps subject to the

constraints E(N1) = n∗1 , E(N2) = n∗2 , and E(N3) = n∗3 , where n∗1 , n∗2 , n∗3 may be observed

marginal tables, equivalently maximizes the Lagrangian

L = −∑
s

ps log ps + ∑
i,j

αij(n∗ij. −∑
s

psn(s)
ij. ) + ∑

i,k
βik(n∗i.k −∑

s
psn(s)

i.k ) + ∑
j,k

γjk(n∗.jk −∑
s

psn(s)
.jk )

+ τ(1−∑
s

ps). (31)

A necessary condition for the maximum of L is

∂L
∂ps

= − log ps − 1−∑
i,j

αijn
(s)
ij. −∑

i,k
βikn(s)

i.k −∑
j,k

γjkn(s)
.jk − τ = 0 (32)

for all s = 1, . . . , S, which is equivalent to (because of ∑s ps = 1)

ps =
ps

∑t pt
=

exp
(

∑i,j αijn
(s)
ij. + ∑i,k βikn(s)

i.k + ∑j,k γjkn(s)
.jk

)
∑t exp

(
−1 ∑i,j αijn

(t)
ij. + ∑i,k βikn(t)

i.k + ∑j,k γjkn(t)
.jk

) . (33)
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Substituting the expression for ps into the equation for L leads to the reduced equation

L = ∑
i,j

αijn∗ij. + ∑
i,k

βikn∗i.k + ∑
j,k

γjkn∗.jk

− log

(
∑

s
exp

(
∑
i,j

αijn
(s)
ij. + ∑

i,k
βikn(s)

i.k + ∑
j,k

γjkn(s)
.jk

)) (34)

The minimum conditions of L now become

∂L
∂αij

= ∑
s

psn(s)
ij. − n∗ij. = 0,

∂L
∂βik

= ∑
s

psn(s)
i.k − n∗i.k = 0, and

∂L
∂γjk

= ∑
s

psn(s)
.jk − n∗.jk = 0. (35)

That is, finding the maximum entropy distribution of the array variable X = (Xijk) just means

finding values for the I J + IK + JK Lagrange-Multipliers that minimize the reduced form equation

(34) of L. With respect to the number of parameters for which to optimize L, this problem is hardly

more complex than the Johnston-Pattie model. Like in the case of the latter, there is no closed form

solution for the minimum of L, so that the minimum has to be approximated iteratively. But in this

case, since we cannot rely on the parametric assumption that the counts come from a multinomial

distribution, it will be necessary to compute several sums with S = (n+I JK−1
I JK−1 ) summands. If,

for example, I = 3, J = 2, K = 100, and n equal to one million, there are approximately 102189

summands. A (still hypothetical) quantum supercomputer that could perform an addition in only

one Plank time (≈ 10−43 seconds) would need approximately 102146 seconds to compute such

a sum, that is approximately 102138 years. Although the problem of finding a non-parametric

maximum entropy distribution of the (I × J × K)-dimensional random variable X = (Xijk) is

formally simple, its solution for non-trivial values of I, J, K, and n is infeasible in a world bound

by the laws of physics.
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B Some Properties of Dirichlet, Dirichlet-Multinomial, and Beta-

binomial Distributions

B.1 Basic Properties of the Dirichlet Distribution

Here we give some basic facts about Dirichlet distributions which are relevant for the argumenta-

tion of the main text. Most of these facts were derived by by Mosimann (1962) who also refers to

Dirichlet distributions as multivariate Beta distributions.

The family of Dirichlet distributions is conjugate to the family of multinomial distributions: If

the distribution of I-tuples of counts has a multinomial distribution M(p1, . . . , pI ; n) with proba-

bility mass function

fM(x1, . . . , xI) =
n!

∏i xi!
∏

i
pxi

i (36)

then a Dirichlet distribution Dt(θ1, . . . , θI) with density function

fDt(p1, . . . , pI) =
Γ (∑i θi)
∏i Γ(θi)

∏
i

pθi−1
i , (37)

for p1 > 0, . . . , pI > 0, ∑i pi = 1 and parameters θ1 > 0, . . . , θI > 0 is a conjugate distribution

(where Γ(.) is the Gamma function, see Abramovitz and Stegun 1964, 255). A comparison of

these two densities illustrates the way in which Dirichlet distributions are conjugate to multino-

mial distributions: In the formula of the multinomial probability mass function p1, . . . , pI are the

parameters, while for the density function of a corresponding Dirichlet distribution they are the

arguments, that is, the ‘data’.

If a random variable P = (P1, . . . , PI) has a Dirichlet distribution with parameters θ1, . . . , θI

then the expectation of each of its components Pi is (Mosimann 1962)

E(Pi) =
θi

∑i θi
. (38)
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Using the notation πi := E(Pi) and θ0 := ∑i θi, we have θi = θ0πi and the variances and covari-

ances of the components of P are

Var(Pi) =
θi(θ0 − θi)
θ2

0(θ0 + 1)
=

πi(1− πi)
(θ0 + 1)

, Cov(Pi1 , Pi2) =
−θi1 θi2

θ2
0(θ0 + 1)

=
−πi1 πi2
(θ0 + 1)

(if i1 6= i2).

(39)

The marginal distribution of individual components Pi is a Beta distribution with shape parame-

ters φi = θi and φ2 = θ0 − θi and density function

fB(p) =
pφ1(1− p)φ2

B(φ1, φ2)
=

Γ(θ0)
Γ(θi)Γ(θ0 − θi)

pθi (1− p)θ0−θi (40)

(where B(., .) is the Beta function, see Abramovitz and Stegun 1964, 258). Thus the relation be-

tween the Dirichlet distribution and the Beta distribution parallels that between the multinomial

distribution and the binomial distribution.

A notable special case of a Dirichlet distribution occurs when all θ1 = · · · = θI = 1. The density

function then reduces to:

fDt(p1, . . . , pI) =
Γ (∑i θi)
∏i Γ(θi)

∏
i

pθi−1
i =

Γ(I)
∏i Γ(1) ∏

i
p0

i = Γ(I) = (I − 1)!, (41)

that is, such a Dirichlet distribution is a uniform distribution over the set of tuples {(p1, . . . , pI) :

p1 > 0, . . . , pI > 0, ∑i pi = 1}.

The Dirichlet family of distributions has a relation to the Gamma family of distributions that

makes the generation of random numbers straightforward (Mosimann 1962): If the random num-

bers X1, . . . , XI have a Gamma distribution with shape parameters θ1, . . . , θI , respectively, and

common scale parameter 1, then the joint distribution of the random variables Pi =
Xi

∑k Xk
is

a Dirichlet distribution with parameter vector (θ1, . . . , θI)′. The generation of Gamma random

numbers is provided for by statistical packages like R (R Development Core Team 2007), so that

random numbers with Dirichlet distribution can be generated easily.
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B.2 The Entropy of the Dirichlet Distribution

While the basic properties of the Dirichlet distribution presented above are already well known in

the statistical literature, the entropy of Dirichlet distributions is not yet commonly known. Since

we have not found a derivation of the entropy of Dirichlet distributions in the literature, we prove

the following lemma, which generalizes a formula that can be found, without proof however, in

Lindley (1956, 1957):

Lemma 3 The the entropy of a Dirichlet distribution with parameters θ = (θ1, . . . , θI) is

H[Dt(θ)] = ∑
i

ln Γ(θi)− ln Γ(θ0) + (θ0 − I)ψ (θ0)−∑
i
(θi − 1)ψ(θi), (42)

where θ0 = ∑i θi.

Here ψ(x) := d
d x ln Γ(x) =

d
d x Γ(x)

Γ(x) denotes the digamma function (Abramovitz and Stegun 1964,

258).

Proof: First note that the entropy is defined as

H[Dt(θ)] = −
∫

ln( fDt(p; θ)) fDt(p; θ) d p (43)

where the integral ranges over all values of p = (p1, . . . pI)′ with ∑i pi = 1.

In the subsequent derivations we use, for notational brevity, the following shorthands:

gDt(θ; p) := ∏
i

pθi−1
i GDt(θ) := ∏i Γ(θi)

Γ(∑i θi)
=
∫

∏
i

pθi−1
i d p1 · · ·d pI , (44)

so that

fDt(p; θ) =
gDt(θ; p)
GDt(θ)

and ln fDt(p; θ) = ln gDt(θ; p)− ln GDt(θ) (45)
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and we can write

−H[ fDt(·; θ)] =
∫

ln( fDt(p; θ)) fDt(p; θ) d p

=
∫

[ln gDt(θ; p)− ln GDt(θ)]
gDt(θ; p)
GDt(θ)

d p

=
1

GDt(θ)

∫
gDt(θ; p) ln gDt(θ; p) d p− ln GDt(θ)

GDt(θ)

∫
gDt(θ; p) d p

=
1

GDt(θ)

∫
gDt(θ; p) ln gDt(θ; p) d p− ln GDt(θ).

(46)

Note that

∂

∂θi
pθi−1

i =
∂

∂θi
e(θi−1) ln pi = e(θi−1) ln pi

∂

∂θi
((θi − 1) ln pi) = pθi−1

i ln pi (47)

and therefore

∑
i
(θi − 1)

∂gDt

∂θi
(θ; p) = ∑

i
(θi − 1)gDt(θ; p) ln pi

= gDt(θ; p) ln

(
∏

i
pθi−1

i

)

= gDt(θ; p) ln gDt(θ; p).

(48)

Therefore we find ∫
gDt(θ; p) ln gDt(θ; p) d p =

∫
∑

i
(θi − 1)

∂gDt

∂θi
(θ; p) d p

= ∑
i
(θi − 1)

∂

∂θi
GDt(θ; p).

(49)

From
∂

∂θi
GDt(θ) =

∂

∂θi

∏k Γ(θk)
Γ(∑k θk)

= ∏k Γ(θk)
Γ(∑k θk)

Γ′(θi)
Γ(θi)

− ∏k Γ(θk)
Γ(∑k θk)

Γ′(∑k θk)
Γ(∑k θk)

= GDt(θ)

(
ψ(θi)− ψ

(
∑
k

θk

)) (50)
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we conclude

−H[ fDt(·; θ)] =
1

GDt(θ)

∫
Ω

gDt(θ; p) ln gDt(θ; p) dp− ln GDt(θ)

=
1

GDt(θ) ∑
i
(θi − 1)

∂

∂θi
GDt(θ; p)− ln GDt(θ)

= ∑
i
(θi − 1)

(
ψ(θi)− ψ

(
∑
k

θi

))
− ln ∏i Γ(θi)

Γ(∑i θi)

= ∑
i
(θi − 1)ψ(θi)− (θ0 − I)ψ (θ0) + ln Γ(θ0)−∑

i
ln Γ(θi),

(51)

from which our proposition follows directly.

Now consider a given distribution Fh with density h(p), where h(p) > 0 if fDt(p; θ) > 0. Then

the Kullback-Leibler information divergence of fDt(p; θ) from h(p) can be written as:

K[Dt(θ) : Fh] =
∫

ln
(

fDt(p; θ)
h(p)

)
fDt(p; θ) d p

=
∫

(ln fDt(p; θ)− ln h(p)) fDt(p; θ) d p

=
∫

ln fDt(p; θ) fDt(p; θ) d p−
∫

ln h(p) fDt(p; θ) d p

(52)

that is, the entropy of the Dirichlet distribution differs from the negative of the Kullback-Leibler

information divergence by the integral −
∫

ln h(p) fDt(p; θ) d p. If h(p) is the density of a Dirichlet

distribution with parameters θ∗, that is h(p) = fDt(p; θ∗), then

∫
ln(h(p)) fDt(p; θ) d p =

∫
ln( fDt(p; θ∗)) fDt(p; θ) d p

=
1

GDt(θ)

∫
gDt(θ; p) ln gDt(θ∗; p) d p− ln GDt(θ∗).

(53)

Computations similar to the above proof lead to

∫
ln fDt(p; θ∗) fDt(p; θ) d p = ∑

i
(θ∗i − 1)

(
ψ(θi)− ψ

(
∑
k

θk

))
+ ln Γ

(
∑

i
θ∗i

)
−∑

i
ln Γ(θ∗i ) (54)

so that the corollary follows immediately:

Corollary 3 The Kullback-Leibler information divergence of a Dirichlet distribution with parameters θ1, . . . , θr
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relative to a Dirichlet distribution with parameters θ∗1 , . . . , θ∗r and the same support is

K[Dt(θ) : Dt(θ∗)] = ∑
i
(θi − θ∗i )

(
ψ(θi)− ψ

(
∑
k

θk

))

+ ln Γ
(
∑

i
θi

)
−∑

i
ln Γ(θi)− ln Γ

(
∑

i
θ∗i

)
+ ∑

i
ln Γ(θ∗i )

(55)

B.3 Properties of the Dirichlet-multinomial distribution

In the main text we make use of Dirichlet-multinomial distributions, also known as compound-

multinomial distributions. We therefore present some of the properties of these distributions rele-

vant for the argument of our paper.

Most of the basic properties of these distributions are known from Mosimann (1962). The prob-

ability mass function of a Dirichlet-multinomial distribution with parameters θ1 > 0, . . . , θI > 0

and size index n is derived as

fDtM(x1, . . . , xI) =
∫ n!

∏i xi!
∏

i
pxi

i
Γ(θ0)

∏i Γ(θi)
∏

i
pθi−1

i d p1 · · ·d pI

=
n!Γ(θ0)

Γ(n + θ0)
∏

i

Γ(xi + θi)
xi!Γ(θi)

(56)

where, again, θ0 := ∑i θi and the integral is over all p1 > 0, . . . , pI > 0 with ∑i pi = 1.

The Expectations of the components of a random variable (X1, . . . , XI) with such a distribution

are:

E(Xi) = n
θi
θ0

= nπi (57)

where, again πi := θi
θ0

. This is a property that helps to justify the method proposed in our paper:

If we obtain some p̂ijk from an ecological inference procedure that satisfy constraints like

∑
i

E(Xijk) = n ∑
i

p̂ijk = n.jk, ∑
j

E(Xijk) = n ∑
j

p̂ijk = ni.k, and ∑
k

E(Xijk) = n ∑
k

p̂ijk = n.jk

(58)
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then these p̂ijk can be interpreted as estimates of the cell probabilities of a multinomial distribu-

tion, as in case of the conditional independence or the Johnston-Pattie model, or they can be inter-

preted as estimates π̂ijk of the means πijk of a Dirichlet distribution: The corresponding Dirichlet-

multinomial distribution then has means E(Xijk) = nπ̂ijk so that

∑
i

E(Xijk) = n ∑
i

π̂ijk = n.jk, ∑
j

E(Xijk) = n ∑
j

π̂ijk = ni.k, and ∑
k

E(Xijk) = n ∑
k

π̂ijk = n.jk.

(59)

The variances and covariances of components of a random variable (X1, . . . , XI) with a Dirichlet-

multinomial distribution are:

Var(Xi) = nπi(1− πi)
n + θ0

1 + θ0
Cov(Xi1 , Xi2) = −nπi1 πi2

n + θ0

1 + θ0
for i1 6= i2. (60)

That is, while the mean of a Dirichlet-multinomial distribution is the same as the mean of a multi-

nomial distribution whose cell probabilities are equal to the mean of the Dirichlet mixing dis-

tribution, the variance is proportional to the variance of such a multinomial distribution. How-

ever, while the variance of the proportions Fi := Xi/n that correspond to multinomial distributed

counts (with cell probabilities p1, . . . , pI) approaches zero as n approaches infinity:

lim
n→∞

VarM(Fi) = lim
n→∞

1
n2 VarM(Xi) = lim

n→∞

1
n2 (npi(1− pi)) = lim

n→∞

pi(1− pi)
n

= 0 (61)

this is not the case for the Dirichlet-multinomial distribution. Instead, the variance of the propor-

tions Fi := Xi/n approaches that of the mixing Dirichlet distribution:

lim
n→∞

VarDtM(Fi) = lim
n→∞

1
n2

(
nπi(1− πi)

n + θ0

1 + θ0

)
= lim

n→∞
πi(1− πi)

1 + θ0/n
1 + θ0

=
πi(1− πi)

1 + θ0
. (62)

This explains why in the simulation study of our paper prediction intervals based on a Dirichlet-

multinomial distribution, in contrast to intervals based on a multinomial distribution, do not show

a deteriorating coverage performance as n increases.
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Also in case of the Dirichlet-multinomial distribution, it is a notable special case if θ1 = · · · =

θI = 1. Then, the probability mass function, because of Γ(x + 1) = x! reduces to

fDtM(x1, . . . , xI) =
n!Γ(I)

Γ(n + I) ∏
i

Γ(xi + 1)
xi!Γ(1)

=
n!(I − 1)!

(n + I − 1)!
= 1

/(
n + I − 1

I − 1

)
(63)

that is, the distribution becomes a uniform distribution for all I-tuples of integers (x1, . . . , xI) with

∑i xi = n.

Uniformly distributed random arrays (xr
ijk) of counts with the property ∑i,j,k xijk = n, as they

were used in the simulation study of our paper, can therefore be generated as follows: First, ran-

dom numbers p(r)
ijk are generated from a Dirichlet distribution with all parameters θijk = 1, second,

random numbers are generated from a multinomial distribution with cell probabilities p(r)
ijk . The

generation of Dirichlet random numbers is described in section B.1 above, the generation of multi-

nomial random numbers is provided for by a statistical package like R (R Development Core Team

2007).

If a random variable (X1, . . . , XI) has a Dirichlet-multinomial distribution with parameters

θ1 > 0, . . . , θI > 0 and size index n, then the individual components X1, . . . , XI have individually

a Beta-binomial distribution with shape parameters φ1 = θi and φ2 = θ0 − θi and probability mass

function

fBb(x) =
(

n
x

)
B(x + φ1, n− x + φ2)

B(φ1, φ2)
(64)

that is, parallel to the way a binomial distribution is related to a multinomial distribution and a

Beta distribution is related to a Dirichlet distribution, a Beta-binomial distribution is related to a

Dirichlet-multinomial distribution.

We use Beta-binomial distributions to construct prediction intervals for the unknown cell counts

xijk for which only marginal summaries n.jk, ni.k, and sometimes nij. are observed. Since asymp-

totic normality does not hold for Beta-binomial distributions as it does for binomial distributions
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if n approaches infinity, some other methods have to employed for the construction of these pre-

diction intervals, which are explained in the following section.

B.4 Cumulative Probabilities of Beta-binomial Distributions

In order to construct prediction intervals for a discrete random variable X with probability mass

function Pr(X = x) = f (x) and cumulative probability distribution F(x) := Pr(X ≤ x) =

∑x
k=0 Pr(X = k) = ∑x

k=0 f (k) one needs to compute the quantile function F−1(α) := sup{x :

F(x) < α} for given αlower and αupper. If the random variable X has a Beta-binomial distribution

with parameters φ1 and φ2 and size index n, its cumulative probability function is

FBb(x) = PrBb(X ≤ x) =
x

∑
k=0

(
n
k

)
B(k + φ1, n− k + φ2)

B(φ1, φ2)
. (65)

Since the cumulative probability function involves several binomial coefficients and Beta func-

tions, its computation in this form can be very costly. On the other hand, asymptotic approxima-

tions (of which we will discuss one further below) will not work well if n, x, or n− x is small so that

an exact computation will be needed in such cases. The effort for computing the cumulative dis-

tribution function can be drastically reduced if some recurrence relations of binomial coefficients

and the gamma function are exploited.

First we define B∗(x, n, φ1, φ2) :=
(

n
x

)
B(x + φ1, n− x + φ2) so that the Beta-binomial probabil-

ity mass function becomes

fBb =
B∗(x, n, φ1, φ2)

B(φ1, φ2)
(66)

For x = 0 and x = 1 we have

B∗(0, n, φ1, φ2) = B(φ1, n + φ2) (67)
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and

B∗(1, n, φ1, φ2) = nB(1 + φ1, n− 1 + φ2), (68)

For integer numbers x > 1 we can exploit the following recurrence relation of the Gamma function

Γ(x + φ) = Γ(x − 1 + φ)(x − 1 + φ) (69)

and of the binomial coefficient (
n
x

)
=

n− x + 1
x

(
n

x − 1

)
(70)

and also the relation between the Beta and the Gamma functions

B(x, y) =
Γ(x)Γ(y)
Γ(x + y)

. (71)

Therefore we find for x > 1

B∗(x, n, φ1, φ2)
B∗(x − 1, n, φ1, φ2)

=
n− x + 1

x
B(x + φ1, n− x + φ2)

B(x − 1 + φ1, n− x + 1 + φ2)

=
n− x + 1

x
Γ(x + φ1)Γ(n− x + φ2)Γ(x − 1 + φ1 + n− x + 1 + φ2)
Γ(x + φ1 + n− x + φ2)Γ(x − 1 + φ1)Γ(n− x + 1 + φ2)

=
n− x + 1

x
Γ(x + φ1)

Γ(x − 1 + φ1)
Γ(n− x + φ2)

Γ(n− x + 1 + φ2)

=
n− x + 1

x
x − 1 + φ1

n− x + φ2
.

(72)

So FBb(x) can be computed efficiently by using the following steps:

1. a = B(φ1, φ2)

2. b0 = B∗(0, n, φ1, φ2) = B(φ1, n + φ2)

3. b1 = B∗(1, n, φ1, φ2) = nB(1 + φ1, n− 1 + φ2)

4. bk =
n− k + 1

k
k− 1 + φ1

n− k + φ2
bk−1 for 1 < k ≤ x

5. FBB(x) =
1
a

x

∑
k=0

bk
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Further efficiency gains can be obtained by using

PrBB(X ≤ x; φ1, φ2, n) = PrBB(X ≥ x; φ2, φ1, n). (73)

In the search of sup{x : FBB(x) < α} the updating step

FBB(x) =
n− x + 1

x
x − 1 + φ1

n− x + φ2

bx−1

a
+ FBB(x − 1) (74)

can be employed for further gains in computational efficiency.

If n is very large, these exact methods may still be computationally too costly. In this case we

employ an approximation to Beta-binomial probability mass and cumulative probability functions

developed by Hald (1968). These approximations rely on the fact that as n goes to infinity, the dis-

tribution of X/n approaches a Beta distribution. Hald proposes the following finite-n corrections:

PrBB(X = x) ≈ fB(h; φ1, φ2)
n

(
1 +

1
n

b1(h; φ1, φ2) +
1
n2 b2(h; φ1, φ2)

)
(75)

PrB(X ≤ x) ≈ FB(h; φ1, φ2) +
1
n

B1(h; φ1, φ2) +
1
n2 B2(h; φ1, φ2) (76)

where h = x/n, while b1(h; φ1, φ2), b2(h; φ1, φ2), B1(h; φ1, φ2), and B2(h; φ1, φ2) are rational func-

tions of h, φ1, and φ2 the details of which we omit here. Both the exact method and the Hald

approximation were implemented in R (R Development Core Team 2007) in order to conduct the

simulation studies of our paper.

C A Non-parametric Bayesian Approach

Like the non-parametric maximum-entropy model, a direct Bayesian model of the unknown cell

counts will consider an (I × J × K)-dimensional random variable X = (Xijk) of counts that satisfy

0 ≤ Xijk ≤ n and ∑i,j,k Xijk = n. Like in section A.4 of this appendix, we consider arbitrary proba-

bility distributions of this random variable, which can be uniquely described by S-dimensional
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vectors (p1, . . . , pS), where each element is defined by ps = Pr(X = x(s)) with ∑S
s=1 ps = 1

and S = (n+I JK−1
I JK−1 ). We further consider the random variables that represent the marginal ta-

bles, N1 = (N.jk) = (∑i Xijk), N2 = (Ni.k) := (∑j Xijk), N3 = (Nij.) := (∑k Xijk). Now, the joint

distribution of N1, N2, and N3 conditional on X is fairly simple:

Pr(N1 = n1 ∧N2 = n2 ∧N3 = n3|X = x)

=


1 if nij. = ∑k xijk and ni.k = ∑j xijk and n.ik = ∑i xijk for all i, j, k

0 if nij. 6= ∑k xijk or ni.k 6= ∑j xijk or n.ik 6= ∑i xijkfor some i, j, k

= δ(x : Sn1,n2,n3)

(77)

where Sn1,n2,n3 := {(xijk) : nij. = ∑k xijk ∧ ni.k = ∑j xijk ∧ n.ik = ∑i xijk for all i, j, k} that is, the set

of all possible arrays that have the given marginal sums and δ(x : S) is the indicator function of S ,

which is equal to one if and only if its first argument is an element of S and null otherwise.

Bayes’ theorem gives the posterior distribution of X given the observed marginal tables n1, n2,

and n3:

Pr(X = x|N1 = n1 ∧N2 = n2 ∧N2 = n3)

=
Pr(N1 = n1 ∧N2 = n2 ∧ (N.jk) = n3|X = x(s)) Pr(X = x)

∑s Pr(N1 = n1 ∧N2 = n2 ∧N3 = n3|X = x(s)) Pr(X = x(s))

=
δ(x : Sn1,n2,n3) Pr(X = x)

∑s δ(x(s) : Sn1,n2,n3) Pr(X = x(s))

(78)

where the sum in the denominator runs over all S = (n+I JK−1
I JK−1 ) possible values the random variable

may take.

Now if the prior probability if X is uniform with ps = S−1, then the posterior simplifies to

Pr(X = x|N1 = n1 ∧N2 = n2 ∧N3 = n3)

=
δ(x : Sn1,n2,n3)S−1

∑s δ(x(s) : Sn1,n2,n3)S−1
=

δ(x : Sn1,n2,n3)
#Sn1,n2,n3

(79)
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where #S is the number of elements of the set S . This posterior distribution has a very simple

structure: The posterior probability, conditional on the observed marginal tables n1, n2, and n3,

that the random array X takes the value x∗ is (#Sn1,n2,n3)
−1 if nij. = ∑k xijk, ni.k = ∑j xijk, and

n.ik = ∑i xijk, and zero otherwise. Despite its simple structure, this probability is difficult to com-

pute: In order to compute #Sn1,n2,n3 one will have to check for each of the possible arrays x(s),

s = 1, . . . , S, whether its marginal tables are equal to the observed marginal tables. As mentioned

in section A.4 of this appendix, for array and population sizes one usually encounters in typical

ecological inference applications, the computational cost will be prohibitive.
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